
3,3,3°,3°-TETRAMETHYL-2,2°-BISTRIMETHYLSILYL-1,1°-BICYCLOPROPENYL: SYNTHESIS AND ISOMERIZATION

Franz Grüger and Günter Szeimies*

Institut für Organische Chemie der Universität München Karlstraße 23, D-8000 München 2, Germany

Summary: Oxidative dimerization of the cuprate 4 afforded a 30% yield of the 1,1'-bicyclo-propenyl derivative 2a, which was converted thermally or by silver(I) ions to the octa-2,6-dien-4-yne 6b.

Thermal, photochemical and catalyzed isomerizations of 3,3°-bicyclopropenyl derivatives have been the object of intensive studies. $^{1-4}$ Recently, several 1,3°-bicyclopropenyls have been obtained by Padwa and his group, and the thermal and photochemical ring-opening reactions of these compounds have been investigated. 5 Although there have been promising attempts towards the synthesis of 1,1°-bicyclopropenyls, 6,7 derivatives of this ring system have to the best of our knowledge not been isolated so far. The 2,2°-bisazirinyl $\underline{1}$, however, has been found to be stable at room temperature. 8 Herein we report on the synthesis of 1,1°-bicyclopropenyl $\underline{2}\underline{a}$ and on the results of some isomerisation reactions of $\underline{2}\underline{a}$.

The silane $\underline{3}\underline{c}$, obtained from $\underline{3}\underline{a}^9$ via $\underline{3}\underline{b}$ and chlorotrimethylsilane in 85% yield, was metalated by lithium diisopropylamide in ether at -25°C to give $\underline{3}\underline{d}$, which was converted to the cuprate $\underline{4}$ by addition of 0.125 equiv. of complex $\underline{5}$. Oxidation of $\underline{4}$ with oxygen $\underline{10}$ at -78°C,

followed by aqueous workup and distillation of the oily residue of the organic phase at 40-50°C (0.05 torr), afforded a 30% yield of $\underline{2}\underline{a}$ as a crystalline solid (mp 41°C), the spectroscopic data of which are in accord with structure $\underline{2}\underline{a}$: IR (KBr): 1677 cm⁻¹ (C=C). ¹H NMR (CDCl₃): δ 0.18 and 1.18 (2 s of intensity 3:2). ¹³C NMR (CDCl₃): δ -0.94 (q, (CH₃)₃Si), 20.87 (s, C-3), 27.11 (q, CH₃), 129.54 and 134.60 (2 s, C-2 and C-1). MS (70 eV): m/e 278 (74%, M⁺).

The trimethylsilyl groups seem to be essential for the stability of $\underline{2}\underline{a}$. The attempt to desilylate $\underline{2}\underline{a}$ with cesium fluoride in DMSO-d₆ at 25°C led to the formation of 2,7-dimethylocta-2,6-dien-4-yne $(\underline{6}\underline{a})^{7,11}$ as the sole product. Likewise, when the reaction sequence giving rise to $\underline{2}\underline{a}$ was carried out with $\underline{3}\underline{a}$ instead of $\underline{3}\underline{c}$, only $\underline{6}\underline{a}$ was isolated in 10% yield. Presumably, in both reactions $\underline{2}\underline{b}$ is formed but rearranges to $\underline{6}\underline{a}$ under the reaction conditions.

A solution of $\underline{2}\underline{a}$ in benzene-d₆ sealed in an NMR tube remained unchanged after heating in a 90°C -bath for 10 min. When $\underline{2}\underline{a}$ was distilled at 0.05 torr through a quartz tube kept at 400°C , $\underline{6}\underline{b}$ was obtained as the only product. $\underline{6}\underline{b}$ was also formed along with some polymeric material, when a solution of $\underline{2}\underline{a}$ in ether was irradiated with a 150 W high-pressure mercury lamp for 5 hours. In addition, $\underline{2}\underline{a}$ was spontaneously and quantitatively isomerized to $\underline{6}\underline{b}$ by a solution of silver tetrafluoroborate in CCl_4 .

$$Me_2^{\ C} = \stackrel{R}{c} - \stackrel{R}{c} = C - \stackrel{R}{c} = C Me_2$$
a: $R = H$
b: $R = SiMe_3$

Acknowledgement: This work was supported by the <u>Deutsche Forschungsgemeinschaft</u> and by the Fonds der Chemischen Industrie.

References:

- 1) R. Breslow, P. Gal, H. W. Chang, and L. J. Altman, J. Am. Chem. Soc. 87, 5139 (1965).
- 2) R. Weiss and H. Kölbl, <u>J. Am. Chem. Soc</u>. <u>97</u>, 3222, 3224 (1975), and references therein.
- 3) J. H. Davis, K. J. Shea, and R. G. Bergman, <u>J. Am. Chem. Soc</u>. <u>99</u>, 1499 (1977), and references therein.
- 4) I. J. Landheer, W. H. de Wolf, and F. Bickelhaupt, <u>Tetrahedron Lett</u>. <u>1975</u>, 349, and references therein.
- 5) A. Padwa, M. J. Pulwer, and R. J. Rosenthal, <u>J. Org. Chem.</u> 49, 856 (1984).
- 6) H.-H. Stechl, Chem. Ber. <u>97</u>, 2681 (1964).
- 7) V. I. Sorokin, V. N. Drozd, N. P. Akimova, and I. I. Grandberg, <u>Zh. Org. Khim</u>. <u>13</u>, 737 (1977); J. Org. Chem. <u>USSR</u> <u>13</u>, 673 (1977).
- 8) K. Banert, Tetrahedron Lett. 1985, 5261.
- 9) F.-X. Huber, J. Sauer, W. S. McDonald, and H. Nöth, Chem. Ber. 115, 444 (1982).
- 10) G. H. Posner, <u>Org. React</u>. <u>22</u>, 253 (1975).
- 11) B. Lythgoe and I. Waterhouse, <u>J. Chem. Soc., Perkin 1</u> 1979, 2429.

(Received in Germany 24 January 1986)